¹²¹Sb Mössbauer Spectra of Hypervalent Complexes Having an Antimonytransition Metal Bond and Partial Quadrupole Coupling Constants

Masashi Takahashi, Atsushi Ishiguro[†], Masaki Maeda, Masuo Takeda, Koichiro Toyota^a, Yohsuke Yamamoto^a, and Kin-ya Akiba^{a,b}

Department of Chemistry, Faculty of Science, Toho University,

Miyama, Funabashi, Chiba 274-8510, Japan

^a Department of Chemistry, Graduate School of Science, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

b Advanced Research Center for Science and Engineering, Waseda University,

3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, Japan

† Present address: Department of Material Science, Graduate School of Science and Engineering, Saitama University, Urawa, Saitama 338-8570, Japan; and

The Institute of Physical and Chemical Research (RIKEN), Wako Saitama 384-0198, Japan

Reprint requests to Prof. M. T.; E-mail: takahasi@chem.sci.toho-u.ac.jp

Z. Naturforsch. **57 a,** 631–639 (2002); received February 26, 2002

Presented at the XVIth International Symposium on Nuclear Quadrupole Interactions, Hiroshima, Japan, September 9-14, 2001.

Antimony-121 Mössbauer spectra for hypervalent pentacoordinate antimony compounds having Sb-transition metal bond [Rf₂SbMCp(CO)_n {RfH = o-C₆H₄C(CF₃)₂OH⁻, M = Fe, Ru, Cr, Mo, W}, Rf₂SbFeCp(CO)PPh₃, Rf₂SbFeCp(dppe)] and closely related compounds Rf₂SbTol (Tol = p-CH₃C₆H₄), Rf₂SbX (X = Cl, Br) are described. The strong σ -donor power of the metal fragments is demonstrated by the Mössbauer parameters. The σ -donor power decreases in the order FeCp(dppe) > FeCp(CO)PPh₃ > FeCp(CO)₂ > RuCp(CO)₂ > CrCp(CO)₃ > MoCp(CO)₃ > WCp(CO)₃ \gg Tol. The essential trends in the molecular structure and the Berry pseudorotation are interpreted by this order. In addition, the e^2qQ values for 32 hypervalent antimony compounds are successfully calculated using the additivity model for the e^2qQ value. A unique electronic feature for Rf₂SbX is clarified through the calculation

Key words: ¹²¹Sb Mössbauer Spectra; Hypervalent Compound; Organometallic Ligand; Berry Pseudorotation.